q/src/build/Function.go

287 lines
6.3 KiB
Go

package build
import (
"fmt"
"strconv"
"git.akyoto.dev/cli/q/src/build/arch/x64"
"git.akyoto.dev/cli/q/src/build/asm"
"git.akyoto.dev/cli/q/src/build/config"
"git.akyoto.dev/cli/q/src/build/cpu"
"git.akyoto.dev/cli/q/src/build/expression"
"git.akyoto.dev/cli/q/src/build/fs"
"git.akyoto.dev/cli/q/src/build/token"
"git.akyoto.dev/cli/q/src/errors"
"git.akyoto.dev/go/color/ansi"
)
// Function represents a function.
type Function struct {
Name string
File *fs.File
Body token.List
Variables map[string]*Variable
Assembler asm.Assembler
CPU cpu.CPU
Error error
count struct{ loop int }
debug []debug
}
// Compile turns a function into machine code.
func (f *Function) Compile() {
f.Assembler.Label(f.Name)
err := f.CompileTokens(f.Body)
if err != nil {
f.Error = err
return
}
f.Assembler.Return()
}
// CompileTokens compiles a token list.
func (f *Function) CompileTokens(body token.List) error {
start := 0
groupLevel := 0
blockLevel := 0
for i, t := range body {
if start == i && t.Kind == token.NewLine {
start = i + 1
continue
}
switch t.Kind {
case token.NewLine:
if groupLevel > 0 || blockLevel > 0 {
continue
}
if start != -1 {
instruction := body[start:i]
if config.Verbose {
f.debug = append(f.debug, debug{
pos: len(f.Assembler.Instructions),
instruction: instruction,
})
}
err := f.CompileInstruction(instruction)
if err != nil {
return err
}
}
start = i + 1
case token.GroupStart:
groupLevel++
case token.GroupEnd:
groupLevel--
case token.BlockStart:
blockLevel++
case token.BlockEnd:
blockLevel--
}
}
return nil
}
// CompileInstruction compiles a single instruction.
func (f *Function) CompileInstruction(line token.List) error {
if len(line) == 0 {
return nil
}
if line[0].Kind == token.Keyword {
return f.CompileKeyword(line)
}
expr := expression.Parse(line)
if expr == nil {
return nil
}
defer expr.Close()
if isVariableDefinition(expr) {
return f.CompileVariableDefinition(expr)
}
if isAssignment(expr) {
return f.CompileAssignment(expr)
}
if isFunctionCall(expr) {
return f.ExecuteFunctionCall(expr)
}
return errors.New(&errors.InvalidInstruction{Instruction: expr.Token.Text()}, f.File, expr.Token.Position)
}
// ExpressionToRegister moves the result of an expression into the given register.
func (f *Function) ExpressionToRegister(root *expression.Expression, register cpu.Register) error {
operation := root.Token
if root.IsLeaf() {
return f.TokenToRegister(operation, register)
}
left := root.Children[0]
right := root.Children[1]
err := f.ExpressionToRegister(left, register)
if err != nil {
return err
}
return f.Execute(operation, register, right)
}
// ExpressionsToRegisters moves multiple expressions into the specified registers.
func (f *Function) ExpressionsToRegisters(expressions []*expression.Expression, registers []cpu.Register) error {
var destinations []cpu.Register
for i := len(expressions) - 1; i >= 0; i-- {
original := registers[i]
expression := expressions[i]
if expression.IsLeaf() {
variable, exists := f.Variables[expression.Token.Text()]
if exists && variable.Register == original {
continue
}
}
register := original
save := !f.CPU.IsFree(register)
if save {
register = x64.RAX
}
err := f.ExpressionToRegister(expression, register)
if err != nil {
return err
}
if save {
destinations = append(destinations, original)
f.Assembler.Register(asm.PUSH, x64.RAX)
}
}
for i := len(destinations) - 1; i >= 0; i-- {
f.Assembler.Register(asm.POP, destinations[i])
}
return nil
}
// TokenToRegister moves a token into a register.
// It only works with identifiers, numbers and strings.
func (f *Function) TokenToRegister(t token.Token, register cpu.Register) error {
switch t.Kind {
case token.Identifier:
name := t.Text()
variable, exists := f.Variables[name]
if !exists {
return errors.New(&errors.UnknownIdentifier{Name: name}, f.File, t.Position)
}
if register != variable.Register {
f.Assembler.RegisterRegister(asm.MOVE, register, variable.Register)
}
f.useVariable(variable)
return nil
case token.Number:
value := t.Text()
n, err := strconv.Atoi(value)
if err != nil {
return err
}
f.Assembler.RegisterNumber(asm.MOVE, register, n)
return nil
case token.String:
return errors.New(errors.NotImplemented, f.File, t.Position)
default:
return errors.New(errors.InvalidExpression, f.File, t.Position)
}
}
// PrintAsm shows the assembly instructions.
func (f *Function) PrintAsm() {
ansi.Dim.Println("╭──────────────────────────────────────╮")
for i, x := range f.Assembler.Instructions {
instruction := f.debugLine(i)
if instruction != nil {
ansi.Dim.Println("├──────────────────────────────────────┤")
}
ansi.Dim.Print("│ ")
if x.Mnemonic == asm.LABEL {
ansi.Yellow.Printf("%-36s", x.Data.String()+":")
} else {
ansi.Green.Printf("%-8s", x.Mnemonic.String())
if x.Data != nil {
fmt.Printf("%-28s", x.Data.String())
} else {
fmt.Printf("%-28s", "")
}
}
ansi.Dim.Print(" │\n")
}
ansi.Dim.Println("╰──────────────────────────────────────╯")
}
// String returns the function name.
func (f *Function) String() string {
return f.Name
}
// identifierExists returns true if the identifier has been defined.
func (f *Function) identifierExists(name string) bool {
_, exists := f.Variables[name]
return exists
}
// isAssignment returns true if the expression is an assignment.
func isAssignment(expr *expression.Expression) bool {
return expr.Token.Kind == token.Operator && expr.Token.Bytes[len(expr.Token.Bytes)-1] == '='
}
// isFunctionCall returns true if the expression is a function call.
func isFunctionCall(expr *expression.Expression) bool {
return expr.Token.Kind == token.Operator && expr.Token.Text() == "λ"
}
// isVariableDefinition returns true if the expression is a variable definition.
func isVariableDefinition(expr *expression.Expression) bool {
return expr.Token.Kind == token.Operator && expr.Token.Text() == ":="
}